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OSCILLATIONS IN A CONTINUOUSLY STRATIFIED FLUID IN A MOVING VESSEL, 
AND THEIR CONTROL* 

L.D. AKULENKO and S.V. NESTEROV 

Classical models of a heavy ideal fluid are used to study internal wave 
motions of a stable stratified fluid in a moving vessel, and methods of 
controlling these oscillations. The case of exponential stratification, 
which differs in a number of essential features from the case of discrete 
stratification studied earlier in /l-3/, is considered. 

1. Formulation of the problem and initial assumptions. We consider one-dimen- 
sional motion (along theox axis) ofa rectangular vessel filled with a heavy ideal incompress- 
ible fluid (see the figure). We assume that the density p of the fluid increases with depth 

(the fluid is permanently stratified), i.e. P' (b) < 0, 
where b is the vertical Lagrangian coordinate /4/. At the 

AV AY initial instant t = 0 the fluid is at rest relative to 
the walls of the vessel, and for t>o the vessel begins 

------ __--- _-- --- pVl= 
to move with an acceleration w(t)=& (t)/dt in the 

------ horizontal direction, e.g. to the right (see the figure). 
----- We require to find the wave motions in the fluid caused 

by the permanent stratification and generated by the motion 
of the vessel with a given variable velocity c @). _ ___ .-- - 

__---- In order to describe the internal wave motions of the 
s(t) -- - ---- C fluid, we shall use a moving OXY coordinate system 

0 0 a a+E 1 x x attached to the left-hand wall of the vessel. Following 

/5/, we shall write the equations of hydrodynamics in terms 
of the Lagrange variables a, 6 which identify the fluid 
particles and are more suitable for further analysis. The 

equations of motion are assumed such, that the displacements of the fluid particles are two- 
dimensional. As a result of all these assumptions, we have the following non-linear Lagrange's 
equations for the coordinates I = ~(a, b,t), y = y(a,b,t) of the fluid particles, in the moving 
coordinate system: 

(x” + w) -g +(y”+g)$= -+g 

(x”+w)~+(y’.+&= -$S 
as au 

aa-z- 
as au _*. 

-abao- ’ P=P(b) 

(1.1) 

Here g is the acceleration due to gravity, p (b) is a known function of the density of 
the individual particle of the fluid, and a dot denotes apartialtimederivative. Insubsequent 
investigations it will be convenient to adopt, as the Lagrange variables (arguments) a,b, 
the initial positions of the fluid particles (see below). 

The first two equations of system (1.1) represent Netwon's equations for fluid particles. 
The third equation expresses the condition of incompressibility of the fluid. The fourth 
equation (an assumption) means that the density of an individual fluid particle is preserved 
during the motion and depends only on the Lagrange variable b. 

The independent Lagrange variables a, b, the coordinates x, Y of the fluid particles (or 
Euler's variables) and the time t, vary within the stated limits 

(a, b) ED = {a, b: 0 < a < 1, 0 < b <h} (1.2) 

Here P is the length of the vessel, and h is the height of the fluid layer. In accordance 
with the assumptions made above , we take the initial conditions for the coordinates x, y in 
the form 
l Prikl.Matem.Melchan.,51,4,585-592,1987 
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z (a, b, 0) = a, y (a, b, 0) = b; z’ (a, b, 0) = y’ (a, b, 0) = 0 11.3) 

and the conditions correspond to the state of the fluid at rest relative to the walls of the 
vessel at t = 0. 

The boundary conditions mean that the walls of the vessel are impermeable 

x (0, b, t) = Y (a, 0, t) = 0, z (1, b, t) = 2, y (a, h, t) = h (1.4) 

We further assume that the simplifying assumption that the acceleration of the vessel 
is fairly low, i.e. that jw(t) Ig-‘< 1 for all GEE [O, 2'1, holds. This condition (see /l/1 
enables us to linearize the equations of hydrodynamics (1.1) with help of the following 
substitutions: 

x = a + C, E = 5 (a, b, t); Y = b + q, q = q (a, b, t) (1.5) 

P=- gip(b)db+X, H = H(a, b, t) 
0 

The unknown quantities E, q in (1.5) represent the small displacements of the fluid 
particles from their initial positions (1.3), and X is a small deviation of the pressure from 
its hydrostatic value. The system of linearized equations of hydrodynamics takes the form 

5” = --p-YiWiaa - w (t) 

1” = -pafuab - Na (b) q 
(4 5) 

aE/aa + aqab = 0; Na (b) = -gp’ (b)/p (b) 

The assumption corresponding to the simplest model of the stratified fluid states 
the magnitude of the square of the Brunt-Vaisala frequency NS(b) /4/ is constant, i.e. 

N’ (b) =i Noa = const > 0 

In this case the fluid density varies exponentially 

that 

(1.7) 

P IN = pa exp (--NeWA p. = P (0) U.8) 

Henceforth, we will assume that assumption (1.7) or (1.8) holds with a sufficient degree 
of accuracy. Then the solution of system (1.6), (1.8) will be obtained in analytic form. 
Below we shall also discuss the properties of the solution in the more general case when the 
quantity Ng(b)> C>S is not constant, but varies with depth. 

The initial and boundary conditions for the new unknown variables 6, n are obtained from 
the conditions (1.31, (1.4) and the substitution formulas (1.51, and remain homogeneous. 

We further introduce the function II, =$(a, b,t) (the stream function of an inhomogeneous 
fluid) such, that 

g = */ab, q = -*taa (1.9) 
Then the third equation of system (1.6) will be satisfied identically. Using relations 

(1.91, we can eliminate the unknown function H from the first two equations of (1.6), and 
obtain a single equation for the stream function $. To make the solution of the corresponding 
boundary value problem easier, we introduce the independent dimensionless variables, i.e. the 
Lagrange variables a, /3 and time 7, the parameters of the system r and p, and the stream 
function Y =Y(a,&z). The substitution formulas have the form 

u = a/h, fi = b/h; z = IV&. 0 <z < 8 = NOT (1.10) 

(ai B) E A = {a, f3: 0 da d F, 0 G B < 1) 

r = l/h, ya = NoBhlg, Y = Q/h” 

6, B* 
Here 4 denotes a rectangular domain of variation of the dimensionless Lagrange variables 
According to (1.6)-(1.10) the equation for the dimensionless stream function can be 

written in the form 

w* (z) s (Noah)-’ w (r/N,) 

The initial and boundary conditions for the stream function Y(a,$,r) follows from 
relations (1.3)-(1.5) and (1.9), and have the form 

(1.11) 

Y(u,B,O)= -$(a,&O)=O (1.12) 

Y (0, p, z) = Y (F, p, t) = Y (a, 0, 2) = Y (a, I, z) - 0 



458 

Thus we require to find a solution of the boundary value problem (l.ll), (1.12). 

2. Formal solution of the internal boundary value problem. Applying the 
method of separation of variables /l/ (the Fourier method) to the homogeneous Eq,(l.ll), we 
can find the eigenfunctions of the corresponding boundary value problem in spatial variables 

a-, P 
@,n, (a, fi) I= sin (nT'na) sin (nnp) exp (i/$yJ3) (2.1) 

(cz,p)c; h,n,n== 4,2,... 

The system of eigenfunctions (bfn,,) (2.1) is complete and orthogonal, with weight e-ye 
in the region (cz,&E A, and this can be confirmed directly. 

Analysing the equations for the Fourier coefficients depending on time T, wa arrive at 
the following expressions for the eigenfrequencies of the small free oscillations of an 
exponentially stratified fluid completely filling a rectangular vessel: 

2 
&r&n = _g($i -W+&)-l, m,n-l,2,... (2.2) 

It should be noted that the spectrum of the eigenfrequencies (m& is discrete, and 
unlike the case of a discretely stratified fluid (see /l-3/ et al.), it depends on two in- 
dependent indices m,n> 1. Moreover, the frequencies axe bounded: o<m,,<~ (in dimen- 
sionless variables the Brunt-Vaisala frequency N D forms their upper limit). It is also 
interesting to note that the set of numbers (mm,,} is dense everywhere on the segment w EIO, 
If, i,e, for any O<ya, P<m there exist natural m,n> 1 such that 1 amn - o 1 <,<e where 
a>0 is arbitrarily small. The corresponding values of the indices m and n depend,naturally, 
on E and also on y”,rs>O_ This means that in an arbitrarily small e-neigbbourhood of any 
given o E IO,il, we can find a denumerable number of frequencies amn and a denumerable 
number of sequences converging to an arbitrary value of m ~[0,1]. 

In the case when N2 (b)+Noa (N’(b)> C>O), the eigenfunctions %,,(a, B) cannot, in 
general, be represented by explicitanalyticexpressions allowing a complete analysis. It can, 
however, be established that there exists, as before, a bounded discrete spectrum of eigen- 
frequencies O<w,,< 1 (in dimensional variables the spectrum has the maximum Brunt-Vaisala 
fraquencyN*, IV* = max*~r(~), r = N*t) as the upper limit). The property that the set (wnm} 
is dense everywhere on the segment w~[O,11 is also preserved; the above assertions follow 
from a analysis of the corresponding Sturm-Liouville problem. 

The properties of the spectrum of natural oscillations of a continuously stratified fluid 
completely filling the vessel I radically change the character of the behaviour of the solution 
of the inhomogeneous problem (1.111, (1.12) as compared with the corresponding cases of 
discrete stratification /l-3/ for which the spectrum of (0%) is one-dimensional and increases 

monbtonieally with nI and 0, -JG for n>i. 
Thus, applying the Fourier method and using the complete orthogonal system of the eigen- 

functions {Cp,,(a,JQ) (2.1) obtained above, we can construct the required solution of problem 
(l.ll), (1.12) in the form of a binary series 

Y*, = Yin@, y) = - 8n-2y (1 - (- I)“e-‘q Xi*@, y) 

(2.3) 

c* (7) = (N,h)-’ c (z/N,) 

It should be noted that '4 -y where the coefficient y>O characterizes the relative 
stratification. The term in (2.3) corresponding to even values of m = 2i, do not appear, just 
as in the cases of discrets stratification /l-3/. The small displacements of the fluid 
particles $(a, b,t), q fa,b,t) (1.5) relative to the initSa1 position &QED are found 
using formulas (1.31, (1.161, with the known expression_t2.3) used as the dimensionless stream 
function 'Y (a, 0,~). 

Let the relative stratification be small, i.e. the ratio v =N~,/l/a<i. Then neglecting 
terms of oxder y' and higher, we can obtain simpler expressions fox the quantities Y, E%rl 
sought* The summation in (2.3) will be carried out over odd values of the index n = 2j 3 1, 
j = 0, 1, . . . . The expressions for the coefficients UT,, (2.3) and functions &,(a,@) (2.1) 
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are reduced to the form (i,j> 0): 

Yin = Yin* (r, y) = -161Py ((2i + 1)(2j -I- 1)[(2i + I)* r-’ -I- (3 + 1)21}-' (2.4) 

D,, (a, p) = mII* (a, f3) = sin nr-' (2i + 1) a sinn(2j + 1) fi 

The expressions for the derivatives of the functions %, (a, @) in a, fi are alsosimpli- 
fied, as well as the expressions for the displacements of the particles E(a, b, t), ?l (a, b-t). 
The eigenfrequencies o,, (2.2) can be expressed as functions of the stratification parameter 

y more simply by neglecting terms of the order of 0 W. The quantities of the order of 

0 W) can be neglected in the functions 8‘,, (T) (2.3) containing o,,z, provided that the 
quantity 8 =N,T is not very large. Thus for small r> 0 the functions Y, E,n will be of 
the order of y ana will vanish for y =O, this obviously followin 

8 
from (l.ll), (1.9). 

Moreover, the functions Y = E=q= 0 of the acceleration w(t) E at t E IO, Tl. 
The velocities of fluid particles ~%(a, b,t), vy(a, b,t) are obtained in the linear approxi- 

mation discussed here, from expressions (l.S), using formulas (1.9), (1.10) and (2.3) deter- 
mining the displacements E(u, b,t), q(d\ b,t), by differentiating the Fourier coefficients &, (2) 
in t 

de. (T) de, (~1 ’ __Z-=N&-&--.= 
dr s w* (z’) cos co2i+l,” (T - 7’) dz’ = 

0 
‘I 

- o~,+~,~ s c* (T’) sino2i+l,, (7 - T’) ch’ + &)+c*(O) sin ohitl,d- 

0 

Thus the dual series (2.3)-(2.5) constructed provide a formal solution of the boundary 
value problem (l.ll), (1.12) in dimensionless variables. The return to the initial dimensional 
variables is made using formulas (1.10). The convergence properties of the formal series 
obtained are studied below. 

3. Investigating the solution of the internal boundary value problem. Using 
the majorant criteria of convergence of dual series we can establish that the series (2.3) for 
the stream function $(a, k) converges absolutely and uniformly in the region (a, B,T)E A X IO, el 
(1.10) for the Riemann-integrable functions, and in particular for the piecewise smooth 
functions W* (7). r E 10, e). Moreover, the quantity W. will, in accordance with (1.5), be 
assumed to be sufficiently smooth so that the basic condition of applicability of the linear 
theory is satisfied. 

The stream function Y is majorised in the region (1.10) by a function of time of the 
form 

The dual series in estimate (3.1) converges for any O<+,Y'<m absolutely and uniformly, 
and can be easily estimated since its coefficients decay fairly rapidly (as the quantities 
Gin - [in (rl + n')]-1). 

The derivatives of the stream function q= hSV in a,b determining the displacements 
&,n of the particles are obtained, according to (1.9) , using term by term dLfferentiation of 
the coefficients @,,(a,B) (2.3). The functions :(a, b,t).q(a,b,t) are majorized by the following 
functions of time (analogous to (3.1) for Y(a,l&~)): 

Cc -8~ay(l+ e-‘/*Y) h 2 ; D&xi,, (C=Lrl) 
i=on=1 

more 
The numerical binary series (3.2) for C,(f=E,tl) converge, since their coefficientsdecrease 
rapidly than (I@. 
Partial differentiation in t (or r) does not impair the convergence of the series for 
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Yand 6.11 (see (2.5) ), since the frequencies o,,< A'~ (or omn<l) are bounded. Therefore, 
expressions (2.5) for the velocities of the fluid particles are obtained by termwise dif- 
ferentiation of the Fourier coefficients &,(T). It is interesting to note that in the case 
the properties of summability of the series over n are improved, and the convergence in i is 
impaired (see below). 

The convergence of the higher-order derivatives in a.6 ofthe stream function y(a, 8,z) 
is not, in general, guaranteed. Therefore the solution Y = Y(a,B,Q of the boundary value 
problem (1.111, (1.12) should be regarded in the sense of strong convergence of Eq.tl.11) 
obtained by termwise differentiation, i.e. over the norm of the space W,@) (A) with weight 

e-Vs /6, ?/. 

4. Control of the motion of the vessel and internal waves in the fluid. 
We shall consider the problems of kinematic control of the motion of the vessel: the acceler- 
ation w(t) = dc(t)ldt, tE LO, Tl is regarded as a control belonging to the class of piecewise 
smooth functions in question, ensuring the existence of the solution of the internal boundary 
value problem (see Sect.3). A large number of formulations for the problems of controlling 
systems with distributed parameters and many definitions pf the controllability appear in 
/E-12/ et al. Below we make use of the concept of controllability adopted in e.g. /8, 11, 12/, 
as the controllability for the system comprising an even number of pendulums by means of a 
single control function (see also /2, 3, 13, 14/j. 

4.1. From the practical point of view the solution of the problem in the case when the 
vessel is displaced from some initial state S (0) = So, c(0) = co (c = ds/dt) to a given final 
state s(T) = S*, C(T) = C* (or to the state in which one of the quantities s(Y) or c(T) 
is not fixed) isof interest. Here we require that the fluid should execute a given motion 
relative to the walls of the vessel, e.g. that it be at rest. 

4.2. Using the properties of the spectrum {amn} of the characteristic oscillations of 
the exponentially stratified fluid in a vessel, established in Sect.2, we find that in the 
general case the system in question, with a denumerable number of oscillatory degrees of 
freedom, cannot be controlled in a finite time interval /2, 3, 11, 12/. Also, in the case 
in question there is no asymptotic quasistationary solution of the problem related to the 
choice of a control w(t), t E 10, Tl of sufficiently small magnitude and a correspondingly 
large magnitude of the end of time interval T, such that the problem of the displacement of 
the vessel is solved and the displacements of the fluid particles remain asymptotically small 
(as in /2, 3/). The situation in question can be explained by the fact that the frequencies 
of natural oscillations w,, J 0 as n+c=J and for a fixed value of m> 1. Therefore, 
when the variables s(t) or c (t) are changed by a signficant amount of the order of unity, 
so will the horizontal c'omponent of the displacement E(a,b, t). It can be established that 
under such a control the quantities $(a, b,t),q(a,b,t) and ‘,v, = 13g /&v, = 3~ /at will remain 
asymptotically small. The control in question can be realized e.g. with help of the functions 

w (t) of the following form. 
lo. Piecewise constant functions w(t), tE IO, 27: 

w(t) = Wkl t E (tk_,, tk], pk = con& k=l,...,k* 

t, = 0, tk* = T, tk-I< tkr i; (tk-1, tkl =(ot Tl 
k=l 

(4.4) 

Here the parameters of the control Wk,tk, k* have to be determined /2, 3/. 
Z". The rapidly oscillating controls w(t), tE (0, T1: 

w(t) = w. + 5 (wp= co9 v,t + wp‘ sin vpt) (4.2) 
n=l 

The condition vP> No in 

%I (7)). The control parameters 
The control w(t), tE IO, T1 

etc. shown above. 

(4.2) helps to avoid the resonance (see expression (2.3) for 
have to be determined from the final conditions. 
can represent the sum of functions of the form (4.1), (4-Z), 

The quantities ) wl, 1, 1 w. 1, I Wpc” I in expressions (4.1), (4.2) are assumed to be suf- 
ficiently small, and the quantity T is assumed to be large, while the variations s(T) - c"T - 
P and (or) c(T)- co must be significant (of the order of unity). ~11 this is of practical 
importance. 

In the special case of the control w(t) (4.2) when w. = 0 and the mean value <c(t))* 
of the velocity c (t) (c’ (t) = w (t). c (0) = c”) is identical with the initial value co (<c (t)>* = c"), 
we arrive at asymptotically small changes in the quantities c(t) and s(t) for all t E (0, Tl: 

r - 

v,-l<v,=const, vP]No>l, p=&...,P* 
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c (t) - co = 0 (max, 1 w 1 Yil),' s(t) - cot - so = 0 (maxtlwj >V-‘), and at asymptotically small quantities 
9, E, II. P.T* U#. The last assertion follows from the formulas of the type (2.3), (2.5), and ex- 
pressions for @lab, -c?$iikz, resulting from elementary integration with respect to time ana 
estimation of the series, which in this particular case converge absolutely and uniformly and 
are bounded uniformly in t for tE 10, Tl, XC=. If, on the other hand, the function fo (Q 
(4.2) brings about a significant change in s(t) (<c(t)>tf~~, for example, w,,#O), it would 
seem that such a control will lead to an analogous significant change in the value of 5= 
e(a,b,.t), since we cannot establish the corresponding estimates uniform in t for g (the 
estimates cause the series for e%@/ab to diverge over the index n). Thus a continuously 
stratified heavy ideal fluid completely filling a rectangular vessel "does not react" to small, 
horizontal, high-frequency vibrations of the vessel. 

4.3. A substantial change in the state of the fluid (within the framework of the linear 
approach), i.e. an appreciable horizontal and vertical "displacement" of its particles occurs, 
according to (2.3), (2.5) and the expressions for the derivatives of the stream function $ 
in a, b, at frequencies VP lying within the resonance band {vp}e (O,NJ. The more effective 
influence of the monochromatfc (single frequency) oscillations of the vessel resulting in the 
greatest increase in t of the displacements 15 I and /q 1. is realized at vp = iVp~ln*, where 
the dimensionless frequencies o,, are found, according to (2.21, m = 1 and n = n? and n* 
has to be determined. The value m. = 1 (i = 0) corresponds to the largest values of the coef- 
ficients Yi, in the expressions for the displacements f=; ag/ ab,q = --d+/ aa r since they 

decrease monotonically as m = 2i +- 1 increases. 
It can be established that for fixed r2>0 and sufficiently small y”> 0, the extremal 

value n* = 1. In the general case of arbitrary O< rat yB(oo the extremal values of the 
indices n* = no* for E ana n* = %* for n can be found from the solution of the corraspond- 
ing maximum problems. According to (2.3) and (4.2) (when w, = 0) and expressions for &#f ab, 
&@I da, in order to determine the optimal indices rk* (5 =1 E,n), we must maximize over n = 
1,2,... the coefficients 

ft (4 = n In2 + y* / (4n5)1-'6 IFa + na f yS I (4n2)]-'/: 

h: = ?fer $ = 1 
(4.3) 

Standard methods of analysing functions of a single variable yield the required values 
of the indices 

nt* = [sgl V nt* = [ql + 1 (4.4) 
XF, -_ (r*/(4@)'/4 (F-* -+. $+/(4,‘"))'$ .r,, = 2-'+ 

The square brackets in expressions (4.4) denote the integer part of the positive number 
xt: It is clear that when xf <I (if yB is sufficiently small), nc* = 1. 
take the values at*= [Xtl under the conditions that 

If xc>*, we 
fc, (I~,11 > ft flql -k 1k, and the values 

nc* = iztl f 1(g = &,q) if we have the opposite inequalities. 
A study of the simultaneous oscillation of the fluid and the vessel resting on an elastic 

support may be of practical interest , as well as other formulations of the problems of rigid- 
body dynamics where the body has cavities of rectangular and other shapes containing a heavy, 
ideal, continuously stratified fluid. 
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ON J~RBULENJ B~~N~~RY LAYER STRU~JUR~~ 

V.V. SYCHW andVIK. v.SYCHEV 

FLOW in the turbulent boundary layer (BL) with Reynolds number R-too is studied by a 
joining asymptotic expansion method. A three-layered asymptotic BL structure is set up, which 
includes, besides the viscous boundary region and the velocity defect region, an intermediate 
region in which a balance of inertia forces , and pressure and turbulent friction forces takes 
place and which is responsible for flow separation under the influence of a disadvantageous 
pressure gradient. 

A study of turbulent BL structure, based on the asymptotic analysis of an open set of 
Reynolds equations, has been the subject of a number of investigations. Early papers /I, 21 
essentially contain the known elements of this type of analysis. The paper by Yajnik /3/ was 
the first attempt at a systematic approach to the problem of construct@q joined asymptotic 
expansions for averaged flow functions in a turbulent BL as R *m. Further developments 
were made in /4-6/. In all these studies the structure of the turbulent BL, either with or 
without a pressure gradient a was established as a double layer: an inner (boundary1 region 
and an outer region. In the first of these, flow is defined by a known Prandtl wall law 
which states that the SW of friction stresses caused by viscous action and turbulent pulses 
of velocity remains invariant across the whole zone. Plow in the outer region is described 
by the l&m&n velocity defect law and represents a slightly perturbed potential flow close to 
the solfd surface. 

The possibility of a formal joining of the solutions for these regions is often seen as 
proof of the existence of an overlap region between them and a logarithmic velocity profile. 
The joining conditions also make it possible to findthatthe relative thickness of the 
velocity defect region is of the order of lilnR, and that the thickness of the layer at the 
wall is of the oxder of 1nRlR 131. 

A more detailed examination of flow in the boundary region carried out below, however, 
shows that the two-layexed flow diagram does not take place in reality. *is aiagrm does 
not contain a region where the internal friction forces , the pressure gradient and inertia 
forces have the same order of magnitude as R-m, i.e. just that region which, according to 
the Prandtl definition, is itself a BL. This, in particular, excludes the possibility of 
explaining the flow separation under a disadvantageous pressure gradient. Indeed, the flow 
in the velocity defect region to a first approximation is not susceptible to the action of 
friction forces and the flow in the nrtll-law region is not subject to the pressure gradient 
(since, for this to be so, the latter must have an unpracticably large values of the order of 
R/insR). 

In /7/# based on experimental observations, a law of the wake was introduced into the 
consideration, successfully linking the laws of the wall and the velocity defect. By this 
law the velocity profile in the BL is essentially dependent on the pressure gradient and 
changes so that, as it approaches the separation point, it adopts the shape of a profile in 
the wake. The law of the wake can therefore be considered as proof that the BL structure is 
not two-layered, i.e. the overlap region of the wall and velocity defect law does not exist 
in reality (even for flow without a pressure gradient) and, consequently, it is essential to 


